US009355149B2

a2 United States Patent

Jeon et al.

US 9,355,149 B2
May 31, 2016

(10) Patent No.:
(45) Date of Patent:

(54) APPARATUS AND METHOD FOR
EFFICIENTLY PROCESSING MULTIPLE
CONTINUOUS AGGREGATE QUERIES IN
DATA STREAMS

(71) Applicant: Samsung Electronics Co., Ltd.,

Suwon-si (KR)

(72) Inventors: Joo-Hyuk Jeon, Yongin-si (KR);

Seok-Jin Hong, Hwaseong-si (KR)

(73) Assignee: Samsung Electronics Co., Ltd.,

Suwon-si (KR)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 199 days.

(21) Appl. No.: 13/896,546

(22) Filed: May 17, 2013

(65) Prior Publication Data

US 2014/0012871 Al Jan. 9, 2014

(30) Foreign Application Priority Data

Jul. 3,2012 (KR) 10-2012-0072374

(51) Int.CL
GOGF 7/00
GOGF 1730

USS. CL
CPC ... GOG6F 17/30516 (2013.01); GOGF 17/30489
(2013.01)

(2006.01)
(2006.01)

(52)

Field of Classification Search
USPC 707/769
See application file for complete search history.

(58)

(56) References Cited

U.S. PATENT DOCUMENTS
2008/0016095 Al

2008/0189575 Al*
2009/0006346 Al*

1/2008 Bhatnagar et al.
8/2008 Miguelanez et al. 714/25
1/2009 CNetal. .ooviiiviinn. 707/4

FOREIGN PATENT DOCUMENTS

KR 10-0810257 3/2008

KR 10-0833540 5/2008

KR 10-1133516 4/2012
OTHER PUBLICATIONS

Li, Jin, et al. “No pane, no gain: efficient evaluation of sliding-
window aggregates over data streams.” ACM SIGMOD Record 34.1
(2005): 39-44.

Krishnamurthy, Sailesh, et al. “On-the-fly sharing for streamed
aggregation.” Proceedings of the 2006 ACM SIGMOD International
conference on Management of data. ACM, 2006: 623-634.
Guirguis, Shenoda, et al. “Three-Level Processing of Multiple
Aggregates Continuous Queries.” Data Engineering (ICDE), 2012
IEEFE 28th International Conference on. IEEE, 2012:929-940.

* cited by examiner

Primary Examiner — Alex Gofman
Assistant Examiner — Muluemebet Gurmu
(74) Attorney, Agent, or Firm — NSIP Law

(57) ABSTRACT

An apparatus and a method for efficiently processing multiple
continuous aggregate queries in data streams are provided.
The apparatus includes a first operation result sharing unit
configured to generate a common window including first
aggregate areas, and store a first operation result of each of the
multiple continuous aggregate queries for each of the first
aggregate areas. The apparatus further includes a second
operation result sharing unit configured to determine a second
aggregate area including at least one of the first aggregate
areas, and store a second operation result of each of the
multiple continuous aggregate queries for the second aggre-
gate area. The apparatus further includes a query processing
unit configured to process the multiple continuous aggregate
queries based on the first operation result and the second
operation result.

16 Claims, 4 Drawing Sheets

RESULT RESULT RESULT
A . A]
EDGE b A
'\\\ 5 | 7 4 2
. 7 2 ¥
w[8.6] [2 T7 4 2 ; ~— !
_— | W3
W | _oommmmm e] | !
4)| | |
________ - ——
/ S."’ N s »
SLICE 0 5 10 15 TIME

U.S. Patent May 31, 2016 Sheet 1 of 4 US 9,355,149 B2

FIG. 1
RESULT RESULT RESULT
A \ A
EDGE b 7
/‘

'\\\ > T 77 Y 2
- AN 4 2 Y ! |
w8,6] 2 T 4 2 ! —~— ;):
p = | W3 | |
B S— | —

U.S. Patent May 31, 2016 Sheet 2 of 4 US 9,355,149 B2

FIG. 2
100
[110 120 |
SECOND
FIRST OPERATION
| OPERATION
RESULIB\%HFARTNG ™ RESULT SHARING
UNIT

140

DATA

STRUCTURE

v /J30
QUERY
PROCESSING
UNIT

US 9,355,149 B2

Sheet 3 of 4

May 31, 2016

U.S. Patent

FIG. 3

4
1

3
1

15
COMMON
WINDOW

S10 811

' S9

S5 S6S7 S8

S2 S3 $4

S1

U.S. Patent May 31, 2016 Sheet 4 of 4 US 9,355,149 B2

FIG. 4

(START)

y
GENERATE COMMON WINDOW
FOR MULTIPLE CONTINUOUS L~ 301
AGGREGATE QUERIES

y
STORE AGGREGATE OPERATION RESULT

OF EACH FIRST AGGREGATE AREA OF i~ 302
COMMON WINDOW IN DATA STRUCTURE

y
CALCULATE INCLUSTON COUNT({IC)
OF EACH FIRST AGGREGATE AREA 303
OF COMMON WINDOW AND STORE
CALCULATED IC IN DATA STRUCTURE

Y

DETERMINE SECOND AGGREGATE | _ 304
AREA OF COMMON WINDOW

y
STORE AGGREGATE OPERATION
RESULT OF EACH SECOND AGGREGATE ~ 305
AREA IN DATA STRUCTURE

y
SHARE AGGREGATE OPERATION
RESULTS STORED IN DATA STRUCTURE L _ 306
IN ORDER TO PROCESS MULTIPLE
CONTINUOUS AGGREGATE QUERIES

Y
REDUCE IC CORRESPONDING TO
AGGREGATE AREA AND SHARED ~ 307
IN DATA STRUCTURE BY ONE

A
DELETE INFORMATION ABOUT
AGGREGATE AREA OF WHICH IC HAS i~ 308
REDUCED 1O 0 FROM DATA STRUCTURE

END

US 9,355,149 B2

1
APPARATUS AND METHOD FOR
EFFICIENTLY PROCESSING MULTIPLE
CONTINUOUS AGGREGATE QUERIES IN
DATA STREAMS

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims the benefit under 35 U.S.C. §119
(a) of Korean Patent Application No. 10-2012-0072374 filed
onJul. 3, 2012, in the Korean Intellectual Property Office, the
entire disclosure of which is incorporated herein by reference
for all purposes.

BACKGROUND

1. Field

The following description relates to an apparatus and a
method for efficiently processing multiple continuous aggre-
gate queries in data streams.

2. Description of the Related Art

The consumption of high speed, unbroken data streams has
grown. A technology that processes a data stream is utilized in
various ways, including in production and maintenance man-
agement, network management systems, stock trading sys-
tems, traffic information systems, cloud computing and
health care. On top of this, widely-used IP systems and ubiq-
uitous computing environments have further caused an explo-
sion in data usage. Hence, a technology that processes a data
stream more efficiently is needed.

While a commonly-used technology that processes data
stores the data before processing, a technology that processes
a data stream processes the data stream before storage, and
thus, requires a new processing technique. In addition, the
technology that processes a data stream should use as little
memory as possible to provide a quick response during pro-
cessing of the data stream.

Generally, a concept of a pane is used to process continu-
ous aggregate queries in a data stream. A technique using the
concept of the pane includes dividing a window of time by a
size of the greatest common divisor between a range and a
slice, generating aggregate operation results based on the
divided window and sharing the aggregate operation results.
This technique yields decent performance in the case of a
single overlapping window, but fails to efficiently deal with a
plurality of overlapping windows and is not particularly use-
ful in sharing aggregate operation results since the size of a
pane is close to 1.

SUMMARY

In one general aspect, there is provided an apparatus con-
figured to process multiple continuous aggregate queries in
data streams, the apparatus including a first operation result
sharing unit configured to generate a common window
including first aggregate areas, and store a first operation
result of each of the multiple continuous aggregate queries for
each of the first aggregate arcas. The apparatus further
includes a second operation result sharing unit configured to
determine a second aggregate area including at least one of
the first aggregate areas, and store a second operation result of
each of the multiple continuous aggregate queries for the
second aggregate area. The apparatus further includes a query
processing unit configured to process the multiple continuous
aggregate queries based on the first operation result and the
second operation result.

10

15

20

25

30

35

40

45

50

55

60

65

2

In another general aspect, there is provided a method of
processing multiple continuous aggregate queries in data
streams, the method including generating a common window
including first aggregate areas for the multiple continuous
aggregate queries. The method further includes storing a first
operation result of each of the multiple continuous aggregate
queries for each of the first aggregate areas. The method
further includes determining a second aggregate area includ-
ing at least one of the first aggregate areas. The method further
includes storing a second operation result of each of the
multiple continuous aggregate queries for the second aggre-
gate area. The method further includes processing the mul-
tiple continuous aggregate queries based on the first operation
result and the second operation result.

Other features and aspects will be apparent from the fol-
lowing detailed description, the drawings, and the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG.1is a diagram illustrating an example of a continuous
aggregate query.

FIG. 2 is a block diagram illustrating an example of an
apparatus configured to efficiently process multiple continu-
ous aggregate queries in data streams.

FIG. 3 is a diagram illustrating an example of multiple
continuous aggregate queries.

FIG. 4 is a flowchart illustrating an example of a method of
efficiently processing multiple continuous aggregate queries
in data streams.

Throughout the drawings and the detailed description,
unless otherwise described, the same drawing reference
numerals will be understood to refer to the same elements,
features, and structures. The relative size and depiction of
these elements may be exaggerated for clarity, illustration,
and convenience.

DETAILED DESCRIPTION

The following description is provided to assist the reader in
gaining a comprehensive understanding of the methods,
apparatuses, and/or systems described herein. Accordingly,
various changes, modifications, and equivalents of the meth-
ods, apparatuses, and/or systems described herein will sug-
gest themselves to those of ordinary skill in the art. Also,
descriptions of well-known functions and constructions may
be omitted for increased clarity and conciseness.

FIG.1is a diagram illustrating an example of a continuous
aggregate query. Referring to FIG. 1, the continuous aggre-
gate query is used for continuous acquisition of summary
information about a data stream that includes summation
(SUM), average (AVG), maximum (MAX), minimum (MIN)
and/or count (COUNT). The continuous aggregate query
includes an aggregation operator and a sliding window. The
aggregation operator is a type of aggregate data, and may
include all kinds of algebraic or distributive aggregation
operations, such as SUM, AVG, MAX, MIN and/or COUNT.
The sliding window is composed of a range and a slide. The
range (e.g., of time) is a data area of interest, and the slide is
aperiod (e.g., of time) of collecting a result, that is, an interval
(e.g., of time) at which the sliding window moves. An edge of
the sliding window is a location connected by two endpoints
of' the sliding window, and two adjacent edges of two respec-
tive sliding windows form one slice.

For example, FIG. 1 illustrates sliding windows w, to w,
with a range of 8 units of time and a slide of 6 units of time.
The sliding windows may be utilized in a user’s continuous
aggregate query stating, “Please report the average transac-

US 9,355,149 B2

3

tion price in the last six minutes at five-minute intervals.” The
user’s continuous aggregate query may be expressed in the
example of Table 1 as follows.

TABLE 1

SELECT AVG(T.price)
FROM Trades T [RANGE 8 Minute SLIDE 6 Minute]

A result is collected every slide or 6 units of time. Each of
the sliding windows includes two edges, and two adjacent
edges of two respective sliding windows form one slice. For
example, an edge at endpoints of the sliding window w1 and
an edge at beginning points of the sliding window w2 form a
slice s,.

A current sliding window may overlap a portion of a pre-
vious sliding window when the sliding window is shifted for
query processing. Such overlapping happens when a range of
the current sliding window is greater than a slide of the
current sliding window. For example, since the sliding win-
dows w, to w; include the range of 8 units time that is greater
than the slide of 6 units of time, the sliding window w,
overlaps a portion of the sliding window w, when the sliding
window w, is shifted for query processing. Due to the over-
lapping, a portion of a query that was processed in the previ-
ous sliding window needs to be processed again in the current
sliding window, and thus, unnecessary operation costs incur.

Further, if a plurality of users needs to acquire summary
information about the same data stream, multiple continuous
aggregate queries may be used. For example, where a plural-
ity of users needs to collect, from a stock trading system,
transaction information about various stock items at different
time slots, or where a plurality of system managers needs to
collect, from a network management system, traffic informa-
tion at different time slots, multiple continuous aggregate
queries may be used and processed simultaneously in one
system.

A method of preventing redundant operations in multiple
continuous aggregate queries, and efficiently sharing results
of the redundant operations by finding out similarities
between the multiple continuous aggregate queries, is
described herein. Accordingly, an efficiency in query process-
ing is enhanced.

FIG. 2 is a block diagram illustrating an example of an
apparatus 100 configured to efficiently process multiple con-
tinuous aggregate queries in data streams. Referring to FIG.
2, the apparatus includes a first operation result sharing unit
110, a second operation result sharing unit 120, a query pro-
cessing unit 130 and a data structure 140.

The first operation result sharing unit 110 generates a com-
mon window for the multiple continuous aggregate queries.
In this example, each of the multiple continuous aggregate
queries includes difterent sliding windows, but relates to the
same type of aggregate data.

FIG. 3 is a diagram illustrating an example of multiple
continuous aggregate queries. Referring to FIG. 3, a common
window is generated to include edges of all sliding windows
w,, W, and w; with respect to the multiple continuous aggre-
gate queries. The common window includes slices S1 to S11
partitioned by the edges. Each of the slices S1 to S11 includes
at least one tuple. Each of the slices S1 to S11 includes a
number, as illustrated in FIG. 3, which indicates a length of
time of a corresponding slice. For example, the slice S1
includes anumber 5 indicating a length of time of the slice S1.
Referring to FIG. 2, the first operation result sharing unit 110
may generate the common window using an on-the-fly (e.g.,

10

15

25

30

35

40

45

50

55

60

65

4

real-time) method to thereby minimize memory usage since it
is not necessary to store information about every common
window in memory.

The first operation result sharing unit 110 determines each
first aggregate area of the common window, in which an
operation result of each query (e.g., a tuple-level aggregate
operation result) is determined and shareable. In other words,
the first aggregate area is a unit of an operation result. The unit
of the operation result is needed to generate the operation
result in advance and share the operation result in order to
process the multiple continuous aggregate queries more effi-
ciently. For example, the first aggregate area may be one of
the slices S1 to S11 of the common window. As aggregate
operations are performed in each of the slices S1 to S11,
tuple-level aggregate operation results of the respective slices
S1 to S11 are shared when the multiple continuous aggregate
queries are processed. The first operation result sharing unit
110 stores the aggregate operation result of each first aggre-
gate area in the data structure 140 to share the aggregate
operation result efficiently.

The first operation result sharing unit 110 further calculates
an Inclusion Count (IC) of each first aggregate area, and
stores the calculated IC in the data structure 140. The IC is a
number of the sliding windows corresponding to (e.g., active
in) a respective first aggregate area (for example, a slice) of
the common window. For example, a number of sliding win-
dows corresponding to the slice S1 is 3 since the sliding
windows corresponding to the slice S1 do not overlap each
other. On the other hand, a number of windows corresponding
to the slice S2 is 4 since the sliding windows w, correspond-
ing to the slice S2 overlap each other. ICs calculated in the
above manner are illustrated in FIG. 3.

The second operation result sharing unit 120 determines
each second aggregate area, including at least one first aggre-
gate area, of the common window. In each second aggregate
area, an operation result of each query (e.g., a slice-level
aggregate operation result) is determined and shareable. In
other words, the second aggregate area is the largest aggre-
gate area in which the aggregate operation result of the mul-
tiple continuous aggregate queries are determined and share-
able. Since the slice-level aggregate operation result is
shareable, more efficiency in processing the multiple continu-
ous aggregate queries may be achieved. The second operation
result sharing unit 120 may generate each second aggregate
area using the on-the-fly method to thereby minimize
memory usage since it is not necessary to store information
about each second aggregate area in memory.

The second operation result sharing unit 120 determines
each second aggregate area based on the calculated IC. The
second operation result sharing unit 120 may determine each
second aggregate area further based on a user-set arbitrary
number and a number of the queries, besides the IC. That is,
during a pre-processing, a user may set the arbitrary number
necessary to determine the second aggregate area.

For example, the second aggregate area T is illustrated in
FIG. 3. Where the user-set arbitrary number is o and the
number of the queries is n, the second aggregate area T is a
group of slices shared by (axn) sliding windows among all
slices and that each include the IC greater than or equal to a
value of (axn). If the user-set arbitrary number a is 1 and the
number of the queries is 3, the value of (axn) is 3. Consider-
ing this value of (axn), the slices S1, S2 and S3 are shared by
3 initial sliding windows, and include the ICs of 3, 4 and 5,
respectively, each of which being greater than or equal to 3.
Therefore, the second aggregate area T includes a group of the
slices S1, S2 and S3. However, the slice S4 is not shared by all
of the 3 initial sliding windows, namely, the initial sliding

US 9,355,149 B2

5

window of the sliding windows w,. Accordingly, the second
aggregate area T does not include the slice S4.

The second operation result sharing unit 120 stores the
aggregate operation result of each second aggregate area in
the data structure 140. Due to such a configuration, the tuple-
level aggregate operation results and slice-level aggregate
operation results are shareable, thereby enhancing efficiency
in query processing.

The query processing unit 130 shares the aggregate opera-
tion results of the first and second aggregate areas that are
stored in the data structure 140. The query processing unit 130
further processes the multiple continuous aggregate queries
based on the aggregate operation results of the first and sec-
ond aggregate areas.

The data structure 140 may be a linked list, a priority
queue, a tree structure, a multi-dimensional structure and/or
any other data structure known to one of ordinary skill in the
art. The data structure 140 may include a plurality of nodes,
and each of the nodes may correspond to either a first aggre-
gate area or a second aggregate area. Each of the nodes may
include an IC, a time slot and/or a portion of information
about the aggregate operation results. In addition, a node
corresponding to a second aggregate areca may include link
information of a first aggregate area included in the second
aggregate area.

While processing the multiple continuous aggregate que-
ries, the query processing unit 130 reduces an IC of a first
aggregate area in which an aggregate operation result is
shared in the data structure 140, by one. In addition, the query
processing unit 130 deletes, from the data structure 140, a
node corresponding to a first aggregate area of which an IC
has reduced to 0 due to the above method. An IC of a first
aggregate area that is reduced to 0 means that the first aggre-
gate area is no longer corresponding to any sliding window, so
that an aggregate operation result of the first aggregate area is
no longer shared. Accordingly, information about the first
aggregate area is deleted from the data structure 140, and
thus, memory space of the data structure 140 is optimized.

FIG. 4 is a flowchart illustrating an example of a method of
efficiently processing multiple continuous aggregate queries
in data streams. In operation 301, the apparatus 100 of FIG. 2
configured to process the multiple continuous aggregate que-
ries generates a common window for the multiple continuous
aggregate queries. The common window is generated to
include all edges of each sliding window for the multiple
continuous aggregate queries, and includes slices partitioned
by the edges.

In operation 302, the apparatus 100 determines each first
aggregate area of the common window, in which an operation
result of each query (e.g., a tuple-level aggregate operation
result) is determined and shareable. The apparatus stores the
aggregate operation result of each first aggregate area of the
common window in the data structure 140. Each first aggre-
gate area may be each respective slice of the common win-
dow, and the aggregate operation result may be stored on a
slice basis.

Inoperation 303, the apparatus 100 calculates an IC of each
first aggregate area of the common window, and stores the
calculated IC in the data structure 140. The IC is a number of
the sliding windows corresponding to (e.g., active in) a
respective first aggregate area of the common window.

In operation 304, the apparatus 100 determines each sec-
ond aggregate area, including at least one first aggregate area,
of the common window. In each second aggregate area, an
operation result of each query (e.g., a slice-level aggregate
operation result) is determined and shareable. In other words,
the second aggregate area is the largest aggregate area in

20

25

30

40

45

55

6

which the aggregate operation result of the multiple continu-
ous aggregate queries are determined and shareable. Since the
slice-level aggregate operation result is shareable, the mul-
tiple continuous aggregate queries may be processed more
efficiently. Each second aggregate area may be generated
using the on-the-fly method, and thus, it is not necessary to
store information about every second aggregate area in
memory. Accordingly, memory usage may be minimized, and
in turn, query processing may become more efficient. Each
second aggregate area may be determined based on the cal-
culated ICS, a user-set arbitrary number and/or a number of
the queries.

In operation 305, the apparatus 100 stores the aggregation
operation result of each second aggregate area in the data
structure 140.

In operation 306, the apparatus 100 shares the aggregate
operation results of the first and second aggregate areas that
are stored in the data structure 140 in order to process the
multiple continuous aggregate queries. That is, tuple-level
aggregation operation results and slice-level aggregation
operation results of the first and second aggregate areas,
respectively, are shared when the multiple continuous aggre-
gated queries are processed, thereby enhancing efficiency in
the query processing.

In operation 307, while processing the multiple continuous
aggregate queries, the query processing unit 130 reduces an
IC corresponding to a first aggregate area in which an aggre-
gate operation result is shared in the data structure 140, by
one. In operation 308, the query processing unit 130 deletes,
from the data structure 140, information about a first aggre-
gate area of which an IC has reduced to 0 due to the operation
307. An IC of a first aggregate area that is reduced to 0 means
that the first aggregate area is no longer corresponding to any
sliding window, so that an aggregation operation result of the
first aggregate area is no longer shared. Accordingly, infor-
mation about the first aggregate area is deleted from the data
structure 140, and in turn, memory space becomes optimized,
thereby preventing delay in the query processing.

The units described herein may be implemented using
hardware components and software components. For
example, the hardware components may include micro-
phones, amplifiers, band-pass filters, audio to digital conver-
tors, and processing devices. A processing device may be
implemented using one or more general-purpose or special
purpose computers, such as, for example, a processor, a con-
troller and an arithmetic logic unit, a digital signal processor,
a microcomputer, a field programmable array, a program-
mable logic unit, a microprocessor or any other device
capable of responding to and executing instructions in a
defined manner. The processing device may run an operating
system (OS) and one or more software applications that run
on the OS. The processing device also may access, store,
manipulate, process, and create data in response to execution
of the software. For purpose of simplicity, the description of
a processing device is used as singular; however, one skilled
in the art will appreciated that a processing device may
include multiple processing elements and multiple types of
processing elements. For example, a processing device may
include multiple processors or a processor and a controller. In
addition, different processing configurations are possible,
such a parallel processors.

The software may include a computer program, a piece of
code, an instruction, or some combination thereof, that inde-
pendently or collectively instructs or configures the process-
ing device to operate as desired. Software and data may be
embodied permanently or temporarily in any type of
machine, component, physical or virtual equipment, com-

US 9,355,149 B2

7

puter storage medium or device, or in a propagated signal
wave capable of providing instructions or data to or being
interpreted by the processing device. The software also may
bedistributed over network coupled computer systems so that
the software is stored and executed in a distributed fashion. In
particular, the software and data may be stored by one or more
computer readable recording mediums. The computer read-
able recording medium may include any data storage device
that can store data which can be thereafter read by a computer
system or processing device. Examples of the non-transitory
computer readable recording medium include read-only
memory (ROM), random-access memory (RAM),
CD-ROMs, magnetic tapes, floppy disks, optical data storage
devices. Also, functional programs, codes, and code segments
accomplishing the examples disclosed herein can be easily
construed by programmers skilled in the art to which the
examples pertain based on and using the flow diagrams and
block diagrams of the figures and their corresponding
descriptions as provided herein.

A number of examples have been described above. Never-
theless, it will be understood that various modifications may
be made. For example, suitable results may be achieved if the
described techniques are performed in a different order and/or
if components in a described system, architecture, device, or
circuit are combined in a different manner and/or replaced or
supplemented by other components or their equivalents.
Accordingly, other implementations are within the scope of
the following claims.

What is claimed is:

1. An apparatus configured to process multiple continuous
aggregate queries in data streams, the apparatus comprising:

a first operation result sharing unit configured to generate a
common window comprising first aggregate areas, store
afirst operation result of each of the multiple continuous
aggregate queries for each of the first aggregate areas,
and calculate an inclusion count (IC) of each of the first
aggregate areas;

a second operation result sharing unit configured to deter-
mine a second aggregate area comprising at least one of
the first aggregate areas, and store a second operation
result of each of the multiple continuous aggregate que-
ries for the second aggregate area; and

a query processing unit configured to process the multiple
continuous aggregate queries based on the first opera-
tion result and the second operation result;

wherein the IC is a number of the sliding windows corre-
sponding to a respective first aggregate area of the com-
mon window,

wherein the common window comprises edges of each
sliding window for the multiple continuous aggregate
queries and each of the first aggregate areas is parti-
tioned by two adjacent edges of the edges, and

wherein the multiple continuous aggregate queries com-
prise different sliding windows, and a same type of an
aggregate operation.

2. The apparatus of claim 1, wherein the aggregate opera-
tion comprises an algebraic aggregate operation and/or a
distributive aggregate operation.

3. The apparatus of claim 1, wherein the aggregate opera-
tion comprises a summation, or an average, or a maximum, or
a minimum, or a count, or any combination thereof.

4. The apparatus of claim 1, wherein:

the second operation result sharing unit is further config-
ured to determine the second aggregate area based on the
1C.

5. The apparatus of claim 4, wherein the IC of each of the

first aggregate areas comprises a number of sliding windows

20

40

45

55

8

for the multiple continuous aggregate queries that correspond
to a respective one of the first aggregate areas.

6. The apparatus of claim 4, wherein the query processing
unit is further configured to:

reduce, by one, the IC of one of the first aggregate areas in

which the first operation result is used to process the
multiple continuous aggregate queries; and

delete information about the one of the first aggregate areas

if the respective IC is reduced to O.
7. The apparatus of claim 4, wherein the second operation
result sharing unit is further configured to determine the sec-
ond aggregate area further based on a predetermined number
and a number of the multiple continuous aggregate queries.
8. The apparatus of claim 1, wherein the first operation
result for each of the first aggregate areas and the second
operation result for the second aggregate area are stored in a
data structure comprising a linked list, or a priority queue, or
atree structure, or a multi-dimensional structure, or any com-
bination thereof.
9. A method of processing multiple continuous aggregate
queries in data streams, the method comprising:
generating a common window comprising first aggregate
areas for the multiple continuous aggregate queries;

storing a first operation result of each of the multiple con-
tinuous aggregate queries for each of the first aggregate
areas;

calculating an inclusion count (IC) of each of the first

aggregate areas;

determining a second aggregate area comprising at least

one of the first aggregate areas;

storing a second operation result of each of the multiple

continuous aggregate queries for the second aggregate
area; and

processing the multiple continuous aggregate queries

based on the first operation result and the second opera-
tion result;

wherein the IC is a number of the sliding windows corre-

sponding to a respective first aggregate area of the com-
mon window,
wherein the common window comprises edges of each
sliding window for the multiple continuous aggregate
queries, and each of the first aggregate areas is parti-
tioned by two adjacent edges of the edges, and

wherein the multiple continuous aggregate queries com-
prise different sliding windows, and a same type of an
aggregate operation.

10. The method of claim 9, wherein the aggregate opera-
tion comprises an algebraic aggregate operation and/or a
distributive aggregate operation.

11. The method of claim 9, wherein the aggregate opera-
tion comprises a summation, or an average, or a maximum, or
a minimum, or a count, or any combination thereof.

12. The method of claim 9, further comprising:

determining the second aggregate area based on the IC.

13. The method of claim 12, wherein the IC of each of the
first aggregate areas comprises a number of sliding windows
for the multiple continuous aggregate queries that correspond
to a respective one of the first aggregate areas.

14. The method of claim 12, further comprising:

reducing, by one, the IC of one of the first aggregate areas

in which the first operation result is used to process the
multiple continuous aggregate queries; and

deleting information about the one of the first aggregate

areas if the respective IC is reduced to 0.

US 9,355,149 B2

9

15. The method of claim 12, further comprising determin-
ing the second aggregate area further based on a predeter-
mined number and a number of the multiple continuous
aggregate queries.

16. The method of claim 9, wherein the first operation
result for each of the first aggregate areas and the second
operation result for the second aggregate area are stored in a
data structure comprising a linked list, or a priority queue, or
atree structure, or a multi-dimensional structure, or any com-
bination thereof.

10

10

